Effets calorifiques
 
 

La transformation d'énergie électrique Wél en une énergie calorifique Wcal est couramment utilisée.

Dans les installations électriques, nous trouvons une quantité impressionnante d'appareils domestiques réalisant cette transformation. Par exemples :

    • cuisinières
    • fours
    • radiateurs pour le chauffage des locaux
    • chaudière pour le chauffage d'un liquide
    • chauffe-eau pour l'eau sanitaire
    • lampe à incandescence
Tous ces exemples sont des applications contrôlables par l'homme.
Ils sont, de ce fait, utiles.
Nous pouvons dire ceci par opposition à l'effet Joule qui, lui, n'est pas contrôlé par l'homme mais par des lois spécifiques aux matières utilisées.

Pour pouvoir équiper vos maisons de ces appareils, il a bien fallu les dimensionner.

Comme nous sommes dans un domaine d'application des lois électriques, nous allons différencier l'énergie calorifique Wcal par un autre symbole de grandeur.



Energie calorifique
 
 

L'énergie transformée en énergie calorifique est symbolisée de la façon suivante:
Symbole de la grandeur : Q

Symbole de l'unité : [J] joule

Dans un transfert d'énergie, il y a toujours des pertes.

Une cuisinière électrique doit chauffer de l'eau dans une casserole. Le but est de pouvoir calculer l'énergie nécessaire pour faire bouillir cette eau.
Phase 1

La tension électrique U appliquée aux bornes de la résistance R provoque le passage d'un courant électrique I.

U = R × I

Phase 2

Ce circuit provoque une puissance électrique P,

P = U × I

Phase 3

qui, appliquée pendant un certain temps, engendre une énergie électrique Wél .

Wél = P × t

Phase 4

Mais ce transfert d'énergie se réalise avec un certain rendement h dû aux pertes par effet Joule (conducteurs).

Wél - Wjoules = Q

Phase 5

Cette énergie calorifique Q doit être transmise à l'élément à chauffer qui peut être soit un liquide, soit un solide.
Ce transfert se fait avec un certain rendement h .

Qabsorbée×h = Qutile

Phase 6

L'élément à chauffer va aussi avoir certaines réactions. Ces réactions seront dépendantes de:

    • la masse m de l'élément (solide, liquide, composition)
    • sa facilité de stocker l'échauffement appelé chaleur massique c
    • sa température q finale désirée
    • sa température q initiale
La relation qui lie les différents éléments que nous venons de citer est la suivante :
Q = m × c ×Dq

Il est nécessaire de disposer d'une tabelle pour connaître les différentes chaleurs massiques c des matières utilisées.




Masse
 
Nous rappelons que la masse d'un corps est donnée par rapport à un étalon de platine iridié pratiquement cylindrique égal à 1 [dm3 ] d'eau à une température de 4 [°C]
Symbole de la grandeur : m

Symbole de l'unité : [kg] kilogramme




Chaleur massique
 
 
La chaleur massique c exprime la facilité qu'a un corps de stocker de la chaleur.

Cette chaleur massique c n'est constante que dans des gammes de températures bien définies (voir tabelle)

Symbole de la grandeur : c

Symbole de l'unité : [J × kg-1 × °C-1]




Température
 
 
La température exprime l'écart d'échauffement d'un corps par rapport à un point fixe de référence où il n'y a plus d'agitation des atomes (ou molécules).

Ce point fixe est la température absolue, soit le "zéro absolu"

Symbole de la grandeur : T

Symbole de l'unité : [K] kelvin

Le "zéro absolu" se situe à -273.16 [°C] ou 0 [K].
C'est l'unité légale de la norme SI (Système International d'unités).

Dans nos applications pratiques, nous travaillerons avec une température q , exprimée en degrés centigrades
ou celsius.

Cette unité ayant été obtenue en divisant en 100 parties égales un thermomètre mesurant de la glace fondante
(admis 0°C) et de l'eau bouillante (admis 100°C) sous une pression p constante de 760 [mm] Hg (Hg est le symbole chimique du mercure)

Symbole de la grandeur : q thêta

Symbole de l'unité : [°C] degré Celsius


Exemple pratique
 
 

Nous désirons chauffer 4 [l] d'eau, prise au réseau d'eau à 14[°C], pour l'amener à ébullition (100 [°C]).
Nous disposons d'un corps de chauffe électrique de 400 [W]. Son rendement est de 97%.

Calculer le temps nécessaire pour faire bouillir ce liquide.

Données :         P = 400 [W]         quantité d'eau = 4 [l]          qinitiale = 14 [°C]
                                qfinale = 100 [°C]           h = 97% ou 0.97

Inconnue :         t = ?

Relations : 

Analyse : 

Nous devons chercher la masse d'eau à chauffer.

Calculons l'énergie calorifique Qeau nécessaire pour chauffer l'eau

Cherchons l'énergie calorifique Qcorps de chauffe :
Qcorps de chauffe×h= Qeau

Cherchons l'énergie électrique Wél appliquée au corps de chauffe

Cherchons le temps t de chauffe

Remplaçons Wél par le développement effectué:

Application numérique




Documentaire
 
 
James Watt ingénieur mécanicien écossais (1736-1819). Après avoir étudié la fabrication des instruments de mesures chez un opticien, il s'établit à son compte en 1757. Ensuite, il est nommé fabricant d'instrument pour l'université de Glasgow, où il est amené à réparer la machine à vapeur de Newcomen que personne ne savait faire fonctionner correctement. En la réparant, il en étudie le fonctionnement et s'aperçoit qu'il y a une grande perte de vapeur donc d'énergie. Cela l'amène à en améliorer le fonctionnement.

Tous ces perfectionnements lui permettent d'obtenir un brevet de fabrication en 1769. Il fonde l'entreprise Boulton et Watt et commercialise ses machines à vapeur dès 1780.

 


 
James Prescott Joule, physicien anglais (1818-1889). Il est d'abord directeur d'une fabrique de bière, avant de se consacrer à la science.
 
 
 

En 1841, il formule les lois qui portent son nom et démontrent que l'énergie électrique transformée en énergie calorifique dans un conducteur, est proportionnelle à sa résistance R, au temps t et au carré du courant I.


 
Léopold Nobili, physicien italien (1787 - 1835). 
 

Inventeur du galvanomètre astatique, formé de deux aiguilles aimantées de pôles opposés, permettant de mettre au point les premiers galvanomètres, instruments de mesure du courant électrique.